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Abstract 

The PGOPHER program is a general purpose program for simulating and fitting molecular 

spectra, particularly the rotational structure. The current version can handle linear molecules, 

symmetric tops and asymmetric tops and many possible transitions, both allowed and 

forbidden, including multiphoton and Raman spectra in addition to the common electric 

dipole absorptions. Many different interactions can be included in the calculation, including 

those arising from electron and nuclear spin, and external electric and magnetic fields. 

Multiple states and interactions between them can also be accounted for, limited only by 

available memory. Fitting of experimental data can be to line positions (in many common 

formats), intensities or band contours and the parameters determined can be level 

populations as well as rotational constants. PGOPHER is provided with a powerful and flexible 

graphical user interface to simplify many of the tasks required in simulating, understanding 

and fitting molecular spectra, including Fortrat diagrams and energy level plots in addition to 

overlaying experimental and simulated spectra. The program is open source, and can be 

compiled with open source tools. This paper provides a formal description of the operation 

of version 9.1. 
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1 Introduction 

 Perhaps the key feature of rotationally resolved molecular spectra is the immense 

amount of information on the molecule and its environment that can be extracted from 

spectroscopic measurements. The necessary downside is that such informative spectra are 

necessarily complicated, and extracting the information can be a daunting task. The program 

described here, PGOPHER, has been developed as a general purpose tool to assist in this task 

by simulating and fitting rotational, vibrational and electronic molecular spectra. The focus is 

on an interactive graphical user interface to make simulation and assignment of spectra as 

easy as the underlying spectroscopy permits, but it is also available in a command line version 

for use in combination with other programs. Its current form has come about as the result of 

applying it to many different spectroscopic problems and it has thus become useful in a wide 
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range of applications. This ranges from simple undergraduate spectroscopy practicals where 

the rotational constant of CO is determined from a traditional infrared spectrum to complex 

cases involving multiple interacting rovibronic states[1], including open shell systems and 

nuclear hyperfine structure. It is not the first molecular spectroscopy program to be published 

– Pickett’s CALPGM suite[2] has become something of a standard and there are several others 

available including ASYTOP[3], ASYROTWIN[4], SPECVIEW[5] and JB95[6]. PGOPHER aims to cover 

similar ground, but in a much more general and easy-to-use way. 

For many spectroscopic problems much of the required logic used in the handling of 

basis sets, energy levels and transitions is independent of the molecular type, and the 

program structure reflects this. An object-oriented approach is used, which allows the 

molecule-specific part to be restricted to a relatively small part of the program, with much of 

the program, including the user interface, written in a general way. There are thus separate 

units of the program for linear molecules, symmetric tops and asymmetric tops which are 

each outlined below, and these are all concerned with the rotational structure of a particular 

vibronic state. A fourth unit, which calculates vibrational structure of electronic states 

ignoring rotation, is also available and is covered in the on-line documentation but not 

described here as it is a relatively recent addition and has a significantly different structure. 

The PGOPHER program has been developed as an open source application, and the 

source and executables can be freely downloaded from the website[7]; see also [8, 9] for 

permanently deposited versions of the program with a doi. This paper formally describes the 

internal structure of the program and the algorithms used; as far as possible the program tries 

to use standard spectroscopic notation and conventions, but there are necessary details that 

must be specified. Detailed instructions for running the program, and example files are 

distributed with the program. The paper is specifically based on version 9.1 of the program[9]; 

earlier versions are broadly similar, though some features may not be available or are slightly 

different, as described in the release notes. Most results are quoted without derivation; see 

standard spectroscopic texts [10-17] for the cases where details are not given. 

2 Overall Operation  

 The underlying structural assumption is that the Hamiltonian is expressed in terms of 

a series of rotational constants given explicitly for each vibrational state of each electronic 

state included in the calculation. The generic term vibronic state is used here, as the 

calculation makes no distinction between the electronic and vibrational parts of the 

wavefunction. At a minimum the information required for each vibronic state, η, will include 

the symmetry, an origin for the state (the energy in the absence of rotational terms) and one 

or more rotational constants. The rotational part of the Hamiltonian is taken to include some 

small terms that are notionally part of the electronic Hamiltonian, including spin-orbit and 

spin-spin coupling and any lifting of vibronic degeneracies, such as lambda-doubling. These 

are conventionally included in the rotational Hamiltonian, and indeed accurate energy level 

calculations require this. 
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To allow multiple states to be included, the calculation is set up using a series of 

objects laid out in a tree structure, as shown in Figure 1. The key object is a “state” object, 

which specifies the symmetry and constants of a single vibronic state. One or more of these 

are grouped under “manifold” objects which are in turn grouped under “molecule” objects 

which are grouped under “species” objects. The intent is that isotopically substituted variants 

of a molecule are grouped under a species object so that, for example, the intensity of a 

particular transition involves the product of a relative concentration (specified at the species 

level) and an abundance (specified at the molecule level). “Transition moment” objects 

specify the possible transitions between states which are grouped under “Transition 

moments” objects which specify the connected manifolds. At the top level is a “mixture” 

object, implying a mixture of several different compounds, each of which has a species object. 

The “mixture” object also contains a “simulation” object that contains global parameters such 

as the temperature and line width which govern the overall appearance of the simulation. A 

minimal set of objects to produce a simulation is shown in Figure 1; any level other than the 

top level can have multiple objects if required. 

 

Figure 1 Minimum sample set of objects for a simulation. The left side shows the generic 
object types, and the right shows a screenshot from the program set up to simulate the pure 
rotational spectrum of HF. The “v=0” object contains the rotational constants, and 
<v=0|T(1)|v=0> the (transition) dipole moment. 

 An important optional possibility is a “perturbation” object, which specifies 

interactions between vibronic states, and can also be used to add non-standard terms to the 

Hamiltonian for a vibronic state. The perturbation objects are placed under the manifold 

containing the states involved and interacting states must therefore be in the same manifold. 

The concept of a manifold of states in fact arises out of the requirement to handle 

perturbations, and is used to group interacting states together. In the absence of 

perturbations the grouping into manifolds is arbitrary, though the calculation is slightly more 

efficient if the number of states in any given manifold is minimized and states with no 

interactions with other states are in their own manifold. To give a specific example, in 

simulating the B-X transition in S2[18], the ground electronic state shows no perturbations so 

the calculation can be structured so that each vibrational level of the ground state is in its 

own manifold. In contrast, the excited B state shows significant interaction with the B" state, 

and one vibrational level of the B electronic state can interact with more than one vibrational 

level of the B" state, so calculation of the excited states must be set up as a single manifold 
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containing several vibrational levels from both the B and B" states. A fragment of the object 

tree required in this case is shown in Figure 2. 

 

Figure 2 Part of screen shot for simulation of multiple interacting vibronic states in S2. It 
includes 5 vibronic states (B… ) and 6 perturbations (<B…||B…>) between them. 

Other objects are also available for more specialised types of calculation, such as 

“nucleus” objects under each state which allow hyperfine structure to be simulated. There 

are no hard limits on the number of any type of object, though the calculation will be slower 

and take more memory as the number of objects is increased. The limiting step for larger 

calculations is typically the matrix diagonalization step; to give an indication a model involving 

~20 interacting asymmetric top states[19, 20] takes a few seconds on a current desktop 

machine. PGOPHER makes use of parallel processing where possible; many of the calculations 

split naturally into independent parts, making this reasonably straightforward to implement. 

For example, energy levels are typically required for a range of values of total angular 

momentum, but calculations for a given value of the total angular momentum can be done 

independently from each other, and thus in parallel. 

For instructions on setting up an object tree readers should refer to the 

documentation supplied with the program. An important consideration is that while most 

objects will have many possible settings, most of these can be left at the default values. A 

complicated object tree can be built up easily from a simple one by copying and pasting one 

or more objects. Given a correctly set up object tree, a variety of spectroscopic calculations 

can then be performed, most importantly simulating spectra and comparing and fitting them 

to experiment. Multiple experimental spectra can be overlaid on the simulation, with a 

separate object tree used to control them. Various supporting tools are also included in the 

program, such as calibrating spectra against known transitions, assigning transitions, making 

energy level plots, and other tools for showing details of the calculation. The program can 

directly handle experimental data and line lists in a wide variety of standard and proprietary 

formats, including simple text format, JCAMP-DX [21] spectra and HITRAN[22] line lists. 
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2.1 Energy Levels 

The essential structure of the program involves the expansion of the wavefunction for a given 

rovibrational level, Ψi as a linear combination of basis states, |j>: 


j

i

ji jc  (1) 

To calculate the coefficients, the Hamiltonian matrix is set up and diagonalized in this basis. 

The basis states and Hamiltonian depend on the system, and are discussed individually below, 

but the basis will typically be expressible in the form |ηsJKM> where η specifies the 

vibrational and electronic state (the “state” object) including total electron spin, s is the 

rovibronic symmetry, J is the total angular momentum, K is its projection along a molecule-

fixed axis, and M the projection along a laboratory axis. These basis functions are in turn a 

specific linear combination of one or two primitive or nonsymmetry-adapted basis functions, 

|ηJKM>; the exact relationship is discussed in the molecule specific sections below. In the 

absence of external electric or magnetic fields, there is no energy dependence on the M 

quantum number and the basis states contributing to any given state of the system will be 

restricted to states of a single total angular momentum (J) and rovibronic (rotational × 

vibrational × electronic) symmetry, s. If hyperfine structure is included then the quantum 

numbers need to be extended to include nuclear spin to give |ηsJKIFM> for a single nuclear 

spin, I, and the total angular momentum now becomes F. (Multiple nuclear spins are 

discussed below.)  

The logic above allows a specific Hamiltonian matrix to be set up on specifying the 

manifold, m, the overall rovibronic symmetry, s, the total angular momentum (J or F), and its 

projection along a laboratory axis, M. Diagonalizing this matrix will give a set of energy levels 

which can be uniquely specified by these quantities and an eigenvalue number, i, found by 

numbering the levels in order of increasing energy. Each of these states will have a set of 

coefficients, 
msJiM

Kc , giving the basis set expansion for the state: 




 
Km

msJiM

K sJKMcmsJiM
,

 (2) 

The sum extends over all vibronic states, η, in the manifold m, and all quantum numbers not 

otherwise specified, typically K or Ω, but also J and/or N depending on the specific calculation. 

In the absence of an external field the energies and coefficients are independent of M, so M 

can be omitted as a label and is not required for calculating the energy levels. The 

modifications required in the presence of external fields are discussed below in the context 

of transition moments and energy level shifts in the presence of external static fields. 

 The treatment of degeneracies requires some comment, in that any linear 

combination of degenerate states is also a solution of the Schrödinger equation for the 

system. The numerical diagonalization process (the LAPACK routines[23] DSYEVR or ZHEEVR are 

used for this) will give the expected duplicate energy values in these circumstances, though 
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the wavefunction associated with each one is a random combination of the possible 

wavefunctions, with the only constraint being that the set returned is orthogonal. The final 

calculated spectrum will be independent of the choice of wavefunction made for the 

degenerate states, though selected properties may be displayed in different ways. For 

example the intensities of the individual components of a transition made up of two or more 

degenerate components may be arbitrary, but the overall intensity is uniquely determined. 

This particularly affects comparisons with other programs or line-lists from the literature, 

though the total simulated spectrum should not be affected. 

 In practice this indeterminacy is found relatively rarely. Formally, the overall 

rovibronic symmetry can only be degenerate for symmetric tops, and these are handled 

specially and only one component of the degenerate pair is calculated. This implies no true 

degeneracy will be encountered, though terms omitted from the Hamiltonian may mean 

some degeneracies are not lifted. However, the common degeneracies that arise from 

omitting terms are typically resolved on symmetry grounds. For example, in linear molecules 

in the absence of lambda doubling, Π states are degenerate but the two components have 

different parity and will thus be calculated separately. Similarly, the +K and –K levels in a 

symmetric top either have different rovibronic symmetry or are a pair with overall E 

symmetry, for which only one component need be calculated. More generally the 

Hamiltonian matrix is scanned for independent sub-blocks with no matrix elements between 

them as part of the process of setting it up. (A parameter SmallE determines the size of 

matrix elements that can be discarded.) These sub-blocks are then diagonalized 

independently; as well as being faster this also avoids spurious mixing between states when 

the full symmetry of the system has not been used in setting up the calculation.  

2.2 Quantum Number Assignment 

 For the purpose of identifying a state m, J, s, i and M are sufficient for internal 

processing, but other quantum numbers (such as Ω and N for linear molecules) are typically 

used to specify states, and PGOPHER provides these. Not only do these additional quantum 

numbers aid interpretation, but the eigenvalue number, i, is not well defined in the presence 

of closely spaced states as small changes in parameter values can change the state order. 

Tracking other aspects of the wavefunction will normally allow stable assignments to be 

made, though in the presence of strong interactions between states none of the schemes 

described here are guaranteed to provide consistent quantum numbers. The calculated 

spectra are independent of the additional quantum numbers applied to the states, and the 

practical consequence is that fitting transitions involving closely spaced levels may require 

manual checking to ensure the correct states are picked. (In these circumstance eigenvalue 

number may be the best label to use.) 

 To assign other quantum numbers the key requirement is to assign a particular final 

eigenstate |msJiM> to a particular basis state |ηJKM>, as the basis states are associated with 

well-defined values for the other quantum numbers. The assignment to a basis state is not 
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necessarily straight forward. Simply picking the largest coefficient from the basis set 

expansion, equation (2), is one of the strategies offered (EigenSearch=True, 

LimitSearch=False) but will often be problematic. As a specific example consider a linear 

molecule in a 3Π state with rotational constant, B = 1 cm–1 and spin-orbit coupling constant, 

A = 20 cm–1. Ω is one of the labels on the basis states, and at J = 5 picking the dominant basis 

state and thus assigning Ω is straightforward as the three states are: 

Ψ1 = +.938|Ω=0> + .340|Ω=1> + .065|Ω=2> (3) 

Ψ2 = –.338|Ω=0> + .856|Ω=1> + .391|Ω=2>  

Ψ3 = +.077|Ω=0> + .389|Ω=1> + .918|Ω=2> 

However at J=20 a simple pick of the largest coefficient would assign both Ψ2 and Ψ3 as Ω=2: 

Ψ1 = +.712|Ω=0> + .636|Ω=1> + .297|Ω=2> (4) 

Ψ2 = –.635|Ω=0> + .402|Ω=1> + .659|Ω=2>  

Ψ3 = +.300|Ω=0> + .658|Ω=1> + .691|Ω=2> 

This ambiguity is inherent for any basis size larger than 2. In this case the dramatic change in 

mixing is a classic example of a switch from Hund’s case (a) to case (b) with increasing J. If a 

Hund’s case (b) basis was used instead then N would be easy to assign for high J but not for 

low J, so this does not provide a general solution to the assignment problem. The solution 

chosen is to preserve the order of the states; for large (positive) values of A the state ordering 

will be Ω=2 > Ω=1 > Ω=0 and this energy ordering is used to assign the quantum numbers, 

rather than the coefficients. The basis states are thus arranged in an expected energy order, 

and the lowest eigenstate is assigned to the lowest energy basis state, and so on. This method 

avoids sudden jumps in quantum number assignments as A is reduced. The same idea of an 

expected energy ordering can be used for the other molecule types, and is discussed for each 

molecule type below. 

 This expected energy ordering will, in general, only apply to subsets of states within 

the overall basis. For example, if more than one vibronic state is included in the basis then no 

particular ordering is expected between components of different states. To address this 

problem the idea of a sub-basis is introduced, defined such that states within a given sub-

basis have a clear expected energy ordering, and different vibronic states are assigned to 

different sub-bases. The mixing between different vibronic states is expected to be small, so 

methods based on wavefunction coefficients for picking the sub-basis are likely to give 

sensible results. Assigning a sub-basis to a final eigenstate is achieved by working out the 

fractional contribution from a given sub-basis from the sum over the sub-basis of the square 

of the wavefunction coefficients of the eigenstate. This fraction is evaluated for all eigenstates 

and, if the sub-basis has n members, the eigenstates with the n largest fractions for that sub-

basis are assigned to that sub-basis. Within these n states the assignment of basis states is 
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done by energy ordering. The process is repeated for each sub-basis, excluding eigenstates 

that have already been assigned. If there are three or more sub-bases then this method can 

still suffer from the conflicting assignment pattern seen in equation (4), but three-way mixes 

between sub-bases are relatively rare for the choice of sub-bases described here and these 

physically correspond to cases where the quantum numbers are likely to be unclear whatever 

scheme is used. 

 The correct choice of division between sub-bases also allows quantum numbers to be 

assigned for closely spaced energy levels that are degenerate in the absence of some 

interaction, provided each of the near-degenerate levels are assigned to a separate sub-basis. 

(This is in any case a requirement of the scheme, as assignment by sub-basis would fail if the 

expected ordering included some degeneracies.) A good example of this is hyperfine structure 

arising from nuclear spin, for which the natural division is to put levels of different angular 

momentum excluding nuclear spin (J) in different sub-bases, in addition to any other 

separations. Physically the interaction with nuclear spin is small, so the J assignment is unlikely 

to be changed by the addition of nuclear spin terms in the Hamiltonian. This translates to the 

expectation that mixing between states of different J and thus sub-bases is small, and the 

method of assignment of eigenstate to sub-basis given here will be reliable. (Indeed, 

hyperfine matrix elements off-diagonal in J are sometimes omitted from the calculation of 

hyperfine structure.) This logic is expected to work in general where a sequence of 

successively smaller sets of terms is added to the Hamiltonian, with each term associated with 

a new quantum number, and each is associated with a division into separate sub-bases. 

2.3 Hyperfine Structure 

Hyperfine structure is handled by setting the number of active nuclei at the molecule 

level, which creates a corresponding set of “nucleus” objects under each state. The number 

of nuclei does not have a hard limit, though multiple nuclei can lead to rather large 

calculations. The default coupling scheme given nuclear spins I1, I2, … In used is: 

F1 = J + I1; F2 = F1 + I2; … F = Fn–1 + In; (5) 

reducing to F = J + I for a single nucleus. Where pairs of equivalent nuclei are present (such as 

in H2 or H2O) a modified coupling scheme must be used: 

I12 = I1 + I2; F = J + I12 (6) 

The AsNext setting for a given nucleus indicates the use of this coupling scheme, and the 

constants for the related nuclei are forced to be identical. Multiple pairs of equivalent nuclei 

are implemented, though three or more equivalent nuclei are not implemented in the current 

version. (The AsNext setting can also be used for molecules with low symmetry, in which 

case the alternative coupling scheme (6) is used, but the constants are not forced to be 

identical.) 
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The assignment of hyperfine quantum numbers has been mentioned above; in general 

each different set of hyperfine quantum numbers and J is placed in a different sub-basis. For 

a single nuclear spin this is reliable, but if more than one nucleus is present some care may 

be required. If the nuclei are arranged in order of coupling strength, with the nuclei with the 

largest interactions first (I1), then the criterion of successively smaller terms will be met, and 

the quantum numbers are likely to be reliable. Nuclei with similar interaction strength (i.e. 

similar values for the hyperfine constants) may need to use the I12 = I1 + I2 coupling scheme 

to avoid strong mixing between sub-bases. 

 The evaluation of hyperfine matrix elements and assignment of quantum numbers is 

very similar for all molecule types. This is because the nuclear spin Hamiltonian terms can 

typically be written as a scalar product of a nuclear spin tensor, Tk(I), and a rovibronic tensor 

that is independent of the spin, Tk(R). k is the rank of the tensors, and it is a standard result 

of tensor algebra[13] as applied to angular momentum that the matrix element of a scalar 

product can be expressed as: 

   

      IIIJKRKJ
IJk

JIF

JKIFMIRMFIKJ

kkFIJ

MMFF

kk

TT

TT








 







 1
 (7) 

This is written assuming a single nuclear spin, I and here I = I'. It is the product of three factors, 

one that is independent of nuclear spin (   JKRKJ k  T ), one that depends only on spin 

(   III k
T ) and a Wigner 6-j symbol. If a second nuclear spin is introduced so the coupling 

scheme is F1 = J + I1 and F = F1 + I2 then the above equation still applies if the replacements J 

→ F1, I → I2 are made and the group of other quantum numbers ηK becomes ηJKI1. The 

resulting reduced matrix element of Tk(R) depends on I1 and F1, but as the operator Tk(R) does 

not contain nuclear spin, another standard result for reduced matrix elements can be used: 

 

       JKRKJ
kJF

IFJ
FF

FJKIRFIKJ

kkFIJ

k








 






T

T

1

11

11

1111

12121 12

 (8) 

Additional nuclei can be handled the same way, with each introducing an additional 6-j 

multiplier of the reduced matrix element of Tk(R) of the same form as in the above equation. 

Operators involving I1 are easier to handle as they cannot change F1 or F: 

        111112111211 11
' FJKIIRFIKJFMIFJKIIRMFIFIKJ kk

FFFF

kk   TTTT

 (9) 
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Overall this means that only the reduced matrix elements   JKRKJ k  T and 

  III k
T  need be evaluated in a manner specific to the interaction and molecule type, 

independent of the number of nuclear spins. 

 The above can also be used for the alternate coupling scheme I12 = I1 + I2; F = J + I12 

with some modifications. For the operator Tk(R)∙Tk(I1) equation (7) can be applied with I 

replaced by I12, and giving the same reduced matrix element of Tk(R) and a reduced matrix 

element involving only nuclear spin that can again be evaluated using standard techniques: 

 

       111

112

2121

1212

122111221

12121 1221 III
kII

III
II

IIIIIII

kkIII

k

T

T







 






 (10) 

The operator Tk(R)∙Tk(I2) will also be required, and can be evaluated in the same way, yielding 

an identical expression with I1 and I2 exchanged, though I12 is replaced by I'12 in the initial 

phase factor. The overall result is again that the same reduced matrix elements 

  JKRKJ k  T and   III k
T  are required, independent of the coupling scheme 

chosen. 

2.4 Transition Moments 

Apart from transition energy, the other important ingredient in simulating transitions is the 

transition intensity, for which the starting point is the transition moment. To allow for the 

possibility of multiphoton and Raman transitions, it is helpful to write the Hamiltonian for the 

interaction of a molecule with an external field in the general spherical tensor form: 

          
k p

k

p

k

p

p

k

kk ETTE 1TT  (11) 

Here k is the rank of the tensors involved and p a projection quantum number (|p| ≤ k) 

specifying the projection of the tensor onto the space-fixed z axis. For the most important 

electric dipole case k = 1 and T1(μ) is the electric dipole moment operator (expressed in a 

space-fixed frame) and T1(E) is the electric field. For magnetic interactions, these become the 

magnetic dipole and magnetic field, respectively. For more exotic transitions other values of 

k must be included: 2 for quadrupole transitions, 0 and 2 (typically) for Raman and two-

photon transitions or more generally up to n if n photons are involved. The transition moment 

is then the matrix element of the  k

pT  term. This depends on the projection of the total 

angular momentum on the space-fixed z axis, M, though fortunately the dependence on this 

is independent of the type of molecule and can be evaluated using the Wigner-Eckart 

theorem: 
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      JKTKJ
MpM

JkJ
JKMTMKJ kMJk

p 












'''

'

'
1''''

''  (12) 

The reduced matrix element on the right hand side can be evaluated by transforming the 

tensor operator from space-fixed to body-fixed axis systems using Wigner D matrices: 

      
q

k

q

k

qp

k

p TDT
*

,  (13) 

where q labels the projection of the tensor onto the body-fixed axis system. It can be 

shown[17] that this leads to the following expression for the reduced matrix element: 

           













q

k

q

KJ

q

k

q

k

qp T
KqK

JkJ
JJJKTDKJ '

'

'
121'21'''

''*

,
  (14) 

independent of p. In this expression   k

qT'  corresponds to the transition moment in the 

body-fixed axis system, and is an integral over electronic and vibrational coordinates only, 

and is thus a simple numerical property of the two vibronic states involved in the transition. 

Its value must be specified, along with the origin and rotational constants, as properties of 

the states involved when setting up the calculation. It is a signed quantity and the relative 

sign of these transition moments is important if more than one contributes to any given 

transition. 

 Combining the above equations yields the transition moment between any two 

primitive basis states, which are easily transformed to the matrix elements between the 

symmetry-adapted basis states. To complete the calculation for the transition moment 

between two final states |msJiM> and |m's'J'i'M'> requires the coefficients from the matrix 

diagonalization calculating them: 
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



 '''''''''
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*''''

''
 (15) 

2.5 Line Strengths 

As the equation above implies, transition moments depend on M, even in the absence 

of an external field, but fortunately the M dependence disappears when the intensities are 

summed over M. The intensity of a transition is proportional to the square of the transition 

moment. In the absence of external fields levels with different M values are degenerate, so 

the required quantity is the transition moment squared summed over the M values for the 

upper and lower states. This leads to the definition of the line strength, S in the literature: 
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 (16) 

The second step follows because the M dependence only arises from the Wigner-Eckart 

theorem as in equation (12) and is independent of all the quantum numbers apart from the 

total angular momentum and its projection. The final step uses a standard property of Wigner 

3-j symbols[24]: 
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and the fact that a tensor of rank k has 2k+1 components. The reduced matrix element can 

be evaluated by adapting equation (15): 
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The sum over p in equation (16) corresponds to a sum over possible polarisations of the light; 

for conventional spectroscopy the unweighted sum above is appropriate. However, to allow 

PGOPHER to handle relative intensities between different ranks of transitions in multiphoton 

spectroscopy a slightly modified quantity is used, Spol, defined as the sum over upper and 

lower M states for a single polarisation, p = 0: 
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 (19) 

With this definition, the effective line strength for multiphoton transitions involving more 

than one overall rank, k, can be found by simply summing the Spol values for the individual 

components, assuming the common case of linearly polarised light. For standard one photon 

transitions we simply have S = 3Spol. 

 The line strength, S, is related to the Hönl-London factor, though the line strength is a 

more general quantity. The Hönl-London factor contains only the rotational quantum number 

dependence of the transition intensity, so for simple systems the Hönl-London factor can be 

calculated from the above by setting the vibronic transition moment,   k

qT'  to one. It 
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relies on the assumption that the line strength can be separated into the product of rotational 

and vibronic factors, which in turn requires that there is a single vibronic transition moment 

contributing to the transition. If there is more than one vibronic transition moment 

contributing then the line strength will depend on their relative signs and magnitudes, and 

the Hönl-London factor is a less useful quantity. An additional complication with Hönl-London 

factors is that there is not a consistent definition in use in the literature, at least for linear 

molecules. This is explored by Hansson and Watson[25] who show that the definitions differ 

by factors of 2 or 2J+1. The definitions used here are consistent with those of Hansson and 

Watson. 

2.6 Intensities 

 Given the line strength for a transition between an upper state, u, and a lower state, l, 

PGOPHER offers various options (controlled by the IntensityUnits setting) for calculating 

line intensities. As a starting point consider calculating the Einstein A coefficient from a 

transition dipole moment, lu [12]: 
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
 (20) 

where νul is the frequency of the transition. (In this section and the next, all quantities are in 

SI units unless the units are explicitly stated.) If we replace |<u|μ|l>|2 with Sul as calculated 

above this gives the total emission rate from u to l for one state of one molecule on all the 

degenerate M components of the transition: 
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 (21) 

This is one of the available options (corresponding to IntensityUnits = EinsteinASum) 

but a more useful quantity is the emission rate from a single upper state component summed 

over the lower state components, which can be obtained by dividing by the upper state 

degeneracy, gu: 
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This is the A value tabulated in line listings output by PGOPHER, and can be selected for plotting 

using IntensityUnits = EinsteinA. For electric dipole transitions the vibronic transition 

moments are input in units of Debye (1 Debye = 10–21/c C m) and the line strength will 

therefore be in units of Debye2. Evaluating the required conversion factors to SI units and 

fundamental constants using CODATA 2014 values[26] the above equation becomes: 
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For magnetic dipole transitions the vibronic transition moments are in units of Bohr 

magnetons and a slightly modified equation is required: 
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 (24) 

Where the magnetic dipole originates from a nucleus, rather than an electron, the nuclear 

magneton is used for the vibronic transition moment and an additional scaling factor of 

(mp/me)2 is required in the above equation. Non-dipole transitions will require different 

scaling factors, but these have not been included in PGOPHER as absolute intensity 

measurements for such transitions are rare. 

The absorption oscillator strength, flu or simply f, of a transition is an alternative way 

of defining line strength and is available with IntensityUnits = OscillatorStrength. 

The relationship is:  
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 (25) 

using the definition given by Hilborn[27, 28]. The line strength is divided by the lower state 

degeneracy to give a quantity that is appropriate for a single lower state, summed over all 

upper states. This is a dimensionless quantity; substituting the fundamental constants gives: 

l
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The oscillator strength for emission, ful, is defined to give a quantity appropriate for a single 

upper state and can be calculated from ful = –gl/gu flu if required. 

 For line intensities the populations of the states involved in the transition must also 

be included. A simple starting point is simply to multiply the line strength by the difference in 

Boltzmann factors for the two states: 

















 








 


Tk

E

Tk

E
 SI ulpol

ulul

BB

Arbitrary expexp  (27) 

This is the calculation for IntensityUnits = Arbitrary. Spol is used here to ensure 

multiphoton transitions are correct, and the degeneracies of the states do not appear as they 

are included in Spol. This will give sensible results for relative intensities for a single species, 

but can give misleading results when comparing related species, such as H2 and HD. In such 

cases the partition function, Q, must be included in the calculation: 
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This is the calculation for IntensityUnits = Normalized, and is the recommended 

starting point for all simulations, provided at least some part of the partition function can be 

calculated. (The partition function is discussed in more detail below.) 

For one photon transitions integrated absorption coefficients can be calculated, for 

which the equation is: 
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This is the cross section per molecule, with units m2 Hz/molecule. S is used in this equation, 

rather than Spol, as it only applies to one photon transitions, and again state degeneracies are 

included in S rather than in the Boltzmann factors. For intensity units of cm−1/(molecule cm−2), 

as used by HITRAN[22], including the required fundamental constants and conversion factors 

equation (29) becomes: 
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This is the calculation used for IntensityUnits = cm2WavenumberperMolecule. 

MHz/(molecule nm2) as used by the JPL catalogue[29] and the CDMS database[30] is also an 

option (IntensityUnits = nm2MHzperMolecule). 

 A note on the definition of the degeneracies, g, is required, as these can depend on 

exactly how nuclear spins are accounted for. The standard rotational factor of 2J + 1 will 

always be included, changing to 2F + 1 if hyperfine structure is included in the calculation. The 

degeneracy will also include any nuclear spin statistical weights given. These weights must 

include any equivalent spins for correct absolute intensities, but non-equivalent spins are not 

necessarily required in the calculation. For example in H2 the 3:1 ratio between ortho and 

para hydrogen must be set up in the statistical weights to reproduce the alternation in 

intensity between even and odd J. However, for the HF molecule which has two non-

equivalent spin ½ nuclei, the nuclear spin degeneracy of (2I1+1)(2I2+1) = 4 is independent of 

J, and can be omitted. Some quantities (Einstein A coefficients, oscillator strengths and 

absorption coefficients) are unaffected by removing this factor, but the line strength (S and 

Spol) and partition functions will change. This can be important in certain circumstances, 

particularly if calculating thermodynamic properties from partition functions. See Fischer et 

al[31] for a further discussion of this point. 

2.7 Population Distribution and Partition Functions 

An important aspect of intensity calculations is the population function used, and the 

partition function arising from it. In simple cases relative populations can be calculated from 

the Boltzmann factors as used above, and the partition function, Q, required for absolute 
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populations, can be calculated from a simple sum over the calculated levels, i with energy Ei 

and degeneracy gi: 

 
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i
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E
gQ exp  (31) 

but in many cases special treatment is required. For example the formulae presented so far 

assume a standard equilibrium Boltzmann distribution, but this is not justified in many 

spectroscopic applications. PGOPHER allows the Boltzmann factors (exp(−E/kBT) above) to be 

replaced by a general expression of variables such as J and state energy via a “custom 

population function” object or by numerically specifying the population of each state at the 

manifold level. This can be required for, say, modelling nascent populations following a 

reaction but PGOPHER also provides several simple adjustments to the standard Boltzmann 

distribution that are adequate in many circumstances. 

 The simplest adjustment is for emission spectra; the population distribution for the 

upper state, f, is typically in equilibrium at some effective temperature and the lower state 

population can be taken as zero. The net emission rate on a given transition is then the 

emission rate for a single molecule in the upper state (equation 21 above) scaled by the 

fraction of molecules in that state: 
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 (32) 

This is selected by setting IntensityUnits = HzperMolecule and setting the Initial 

flag to true on the upper manifold and false on the lower manifold. The Initial flag controls 

whether the manifold is included in population and partition function calculations; the 

population is taken as zero if Initial is false. (It will speed up calculations if this is set to 

false for the upper manifold of an absorption transition where the energy gap is large 

compared to kBT, but this is not essential.) 

 Also available is the possibility of specifying different temperatures for different 

degrees of freedom, reflecting the different rates of energy transfer. Separate vibrational and 

spin temperatures, Tvib and Tspin, can be specified if required in addition to the main 

temperature, T, which is essentially a rotational temperature. 

 A common example of a requirement for a separate vibrational temperature, Tvib, is in 

molecular beam spectra, where rapid rotational cooling means that only very low J states are 

populated, giving rotational temperatures of a few K, but there will be insufficient collisions 

to change vibrational states, so the effective vibrational temperature is typically rather higher. 

The Boltzmann factor for state i is actually taken as: 
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 (33) 

Here Ei is the energy of the state, E0 is the vibronic state origin and EB is an energy offset. Note 

that the selection of E0 requires that a single vibronic state can be identified for a particular 

rovibronic state which, as discussed under quantum number assignment, is not guaranteed 

so specifying a separate Tvib where there is significant vibronic mixing may not give consistent 

results. E0 is normally the state origin specified in the input file, but for linear molecules, 

additional code shifts this to the energy of the lowest spin-orbit component, as the origin of 

the spin-orbit Hamiltonian can be at significantly different energy to that of the lowest 

component. 

The use of an overall energy offset, EB above, requires some discussion. The origin of 

the calculated energies depends on the Hamiltonian chosen and how the calculation is set up, 

and the lowest value of Ei may be significantly different from zero. If the partition function is 

included in intensity calculations, the final result should be independent of EB, but the obvious 

choice of zero will often result in overflow or underflow in intermediate calculations. Ideally 

EB would be the energy of the lowest level, but this would require two passes over the energy 

levels for (in most cases) little gain in accuracy so the lowest value of E0 is normally used. (The 

search for the lowest origin considers all manifolds with the Initial flag set.) It can also be 

specified manually via the AssumedOrigin setting for a molecule, which may be required at 

very low temperatures, typically << 1K. 

 Adjustments to the population calculations are also required when considering 

nuclear spin states; the textbook example is ortho and para H2 which interchange very slowly 

as the probability of a molecular collision changing nuclear spin orientation is very low. As for 

vibration, a separate temperature, here Tspin, can be specified, but different logic is needed to 

correct the intensity. The requirement is that the ratio between the total population of each 

spin matches the ratio at the specified spin temperature. More formally, if we define Qs(T) as 

the Boltzmann state sum over levels, i, belonging to spin species s at temperature T: 

 
   













 







 


si

i
is

Tk

EE

Tk

EE
gTQ

vibB

B0

B

0 expexp  (34) 

then the equilibrium fraction of a particular spin species at temperature T is: 
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To compute the population with Tspin ≠ T a spin species abundance, as(T,Tspin) is introduced 

which scales the population for each level of spin species s to give the required overall ratio 

of states, which is given by: 
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so the population of a given level i becomes: 
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With this definition the modified partition function sum for a given T and Tspin, Q(T, Tspin) 

becomes: 
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That this gives the desired result can be confirmed by working out the fraction of states with 

a given spin species: 
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In practice this requires the calculation of the partition function sum at two temperatures: 

Tspin to calculate fs(Tspin) and T to calculate Q(T, Tspin). 

 Evaluation of the partition function sum can also require special consideration. By 

default the sum is evaluated in order of increasing J and terminated when the last 8 J values 

contributed < 10–4 to the overall sum. (More than one J value is required for the convergence 

test as statistical weights from nuclear spins and other symmetry factors often show a 

strongly oscillating pattern as a function of J.). This sum is not necessarily convergent, as can 

be seen by considering the standard linear molecule expression for rotational energies: 

     22 11  JDJJBJJF  (40) 

At high enough J this expression will start decreasing and eventually give unphysical negative 

energies; this is inherent in the power series expansion used and is not restricted to linear 

molecules. If the partition function sum does not converge before reaching the maximum in 

this expression then the sum will never converge. Simply limiting the range of J considered 

may be adequate (setting AutoQConverge off will limit the sum to the maximum value of J 

specified for the simulation) or the molecular parameters may need adjustment to remove 

the unphysical behaviour at high J. 
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 The other concern is the vibronic states included in the sum. Formally the required 

sum, for which the term total internal partition sum (TIPS) is sometimes used, should be over 

all populated states in the molecule. Schematically the sum can be written as: 
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For more complicated systems the sum will have the same form, but the sum over v should 

be over all vibrational states of all populated electronic states, and the sum over J should be 

over all the rotational and hyperfine quantum numbers. (See also the discussion above 

concerning statistical weights.)  

If simulating a single vibrational band, say the origin band, the higher vibrational states 

will not necessarily be set up in the calculation, and will thus not be included in the sum 

leading to a partition function below the true value. At low temperatures, or if only relative 

intensities are required, this may be unimportant, but various approaches are available to 

correct for this. In principle all the required vibrational or electronic states could be included 

in the calculation, but this could lead to an unnecessarily complicated calculation and, in 

addition, the required constants may not be known. Two additional approaches to calculating 

the partition function are provided. 

Firstly, a table of values may be supplied giving the partition function as a function of 

temperature; this is set up by adding an “interpolated partition function” object to a 

molecule. Values at the required temperature are derived by Lagrange interpolation from the 

supplied values, as used by the HITRAN database[31]. Some care can be needed in making 

sure the energy origins used in calculating the Boltzmann factors and the partition function 

are consistent. An energy zero, EQ can be specified for the input partition function (which 

defaults to 0) and then the populations are calculated as: 
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As discussed above, the lowest calculated energy is dependent on the details of the 

Hamiltonian, and will not necessarily be consistent with the energy origin chosen for the 

external partition function, Qext. A common choice would be to take the lowest energy as zero, 

and so an AutoZero option is provided (on by default) which multiplies the partition function 

by exp(–Emin/kBT) where Emin is the lowest calculated energy. This population function then 

becomes 
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which is equivalent to shifting the energy origin to the energy of the lowest state. 
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 A slight modification to this, controlled by the Multiply flag, is for the provided 

function to scale the calculated partition function, rather than replace it. With the right setup, 

this is equivalent to supplying a vibronic partition function rather than an overall one, as can 

be seen if we make the approximation that the overall energy, Ev,J, can be decomposed into 

a vibrational part, Ev, and a rotational part, EJ. Under these circumstances the overall sum, 

equation (41) above, can be simplified to a product of two sums: 
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If PGOPHER is set up to only include the lowest vibronic level in the explicitly calculated partition 

function sum then the second term in the product, essentially the rotational partition 

function, will be evaluated exactly for the lowest vibronic level, and the first term, essentially 

the vibrational and electronic partition function, is calculated as one. Supplying Qvib is then 

equivalent to the common assumption that the partition function can be evaluated as a 

product. This ignores (among other things) the dependence of rotational constants on 

vibration, and can be improved by including more states explicitly. In these circumstances the 

required external values are: 
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where vmax is the highest v included in the explicit calculation. 

 A second approach is to set up a separate vibrational and electronic energy level 

calculation in PGOPHER. This is possible with a “vibrational partition function” object, with an 

additional “molecule” object below it, which allows an independent energy level calculation 

for the vibronic partition function. The calculation is similar to that described in the previous 

calculation, evaluating both the sums in equation (45) above. The switchover point from the 

full to the vibronic only calculation is specified in terms of a switching energy, ESwitch. 

When set up in this way the partition function is still calculated by an explicit sum over states 

so needs to be checked for convergence as for the full sum as discussed above. This can be a 

time consuming calculation but is potentially more accurate as anharmonicity and coupling 

between modes can be included in the calculation while simple approaches do not[31]. 

2.8 Energy Levels in the Presence of an External Field 

The transition moments discussed above are those required when calculating energy 

levels in the presence of a static external electric or magnetic field. In this case the projection 

quantum number, M, needs to be explicitly included in the calculation. For the purposes of 

the calculation, the current implementation requires that the space-fixed axis that defines M 

is taken as the direction of any external fields. This is equivalent to restricting the external 
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fields to the p = 0 component in spherical tensor notation, which has selection rules ΔM = 0. 

Equation (2) above then becomes: 




 
KJsm

miM

sJK sJKMcmiM
,,,

 (46) 

As external fields can mix states with different total angular momentum and symmetry, these 

move from labelling the overall basis set (on the left) to part of the sum on the right. Energy 

levels are now calculated by setting up a Hamiltonian matrix including all basis states that can 

contribute to a given value of M. Note that the final states and coefficients now depend on 

M, though the restriction to p = 0 component means that the sum need not be over M. The 

sum is also restricted to states in the given manifold m, which may require a set-up with all 

states in the same manifold. 

The external field will also mix states of different J (hence the inclusion of J in the sum 

above) and the basis required here is in principle infinite. In practice a finite range of J will be 

used, but a range of J to include in the basis for the calculation must be specified and the 

calculation checked for convergence with respect to increasing the range of J. (A maximum J 

in the basis 1 or 2 higher than the highest J of interest is often sufficient.) The resulting 

matrices are likely to be quite large, but this size of calculation is required for exact 

calculations for molecules subject to fields required for molecular steering and trapping. It 

would be possible to reduce the computations required at lower fields by calculating Stark 

and Zeeman shifts using perturbation theory rather than a full diagonalization but this is not 

currently implemented. 

 To calculate transition moments in the presence of an external field the direction of 

the field(s) corresponding to absorbed or emitted radiation must also be specified. If the 

polarisation of this radiation is not random then the direction is specified by adding one or 

more “polarization” objects under the simulation object. This is equivalent to specifying the 

relative values of the tensor describing the external field,  ETp

1  in the notation above. 

3 Molecule Types 

 The basis set, quantum numbers and Hamiltonian are detailed below for each of the 

three types of molecules covered here. The Hamiltonian is expressed in terms of angular 

momentum operators – note the distinction between the quantum number (J), the operator 

for a component ( zĴ ) and the vector operator for the angular momentum ( Ĵ ). The basis 

functions all involve rotation matrices to express implicitly the dependence of the rotational 

wavefunction on the angles between space- and molecule- fixed axis systems; the specific 

choice made is as described by Brown and Howard[32], which also describes the general 

method used to evaluate the matrix elements. The choice also dictates that the matrix 

elements of xĴ  are real and positive in both the space-fixed and molecule-fixed axis systems. 
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 The matrix elements of yĴ  are then necessarily imaginary, but all the standard 

components of the Hamiltonians given below involve combinations of operators with all real 

matrix elements, so the default method of calculation is to use real numbers throughout. 

Imaginary operators typically appear when considering mixing between vibronic states, as 

(for example) in Coriolis interaction between two vibrational states for which the rotational 

operator is xĴ , yĴ  or zĴ . For this reason PGOPHER allows the entire wavefunction calculation 

to be done using complex arithmetic, controlled by the AllowComplex flag. If this flag is on 

the calculation is still carried out with real arithmetic unless imaginary operators are detected. 

AllowComplex defaults to off, as multiplying imaginary matrix elements by –i often 

makes little or no difference to the calculation. There are two considerations that lead to this 

small difference: Firstly, for some point groups all the matrix elements connecting two 

vibronic states are imaginary, in which case multiplying the imaginary matrix elements by –i 

simply corresponds to a different choice of phase for the wavefunctions. Alternatively, 

imaginary matrix elements typically involve small mixing between states, for which the 

standard second order perturbation theory formula would give good results, and this formula 

is independent of the phase of the matrix elements.  

 In the sections below, standard “spectroscopic” units are used, in that in an energy 

expression such as 

     22 11  JDJJBJJF  (47) 

F, B and D all have the same energy equivalent units, with the factors of h/2π from the angular 

momentum operators included in the rotational constants. (Constants can be input in any of 

the common spectroscopic units (cm–1, MHz, eV or K) and the calculations are done in the 

same units.) 

3.1 Linear Molecules 

 For each vibronic state, η, the standard components of the term symbol must be 

specified including the overall electron spin, S and the vibronic symmetry (Σ+, Σ–, Π, … and g 

or u if the molecule has a centre of symmetry). The vibronic symmetry implicitly gives the 

projection of the angular momentum excluding spin, N = J – S on the molecular (z) axis. This 

latter is in general K = Λ + l, the sum of an electronic orbital component, Λ, and a vibrational 

component, l. For simplicity Λ is used for this in PGOPHER and below, but it should be 

understood as K and the difference between vibrational and electronic angular momentum 

only manifests in the values of the parameters required. The other vibrational quantum 

numbers are not required for the calculation, but might be used in choosing the name for 

each state. 

A Hund’s case (a) basis is used, so the standard basis will contain the 2S + 1 values of 

Ω, the projection of J on the z axis. Allowing for both possible signs of Λ this gives 2(2S+1) 

primitive basis functions |ηJΛΩ> where Λ ≠ 0. The overall (rovibronic) symmetry properties 
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must also be specified; a key symmetry is the overall parity of the wavefunction, + or –. It is 

often more convenient to use e and f labels to specify parity [33], as the parity typically 

alternates with J. These labels are defined such that: 

e levels have parity +(−1)J (J integral) or +(−1)J−½ (J half-integral) 

f levels have parity −(−1)J (J integral) or − (−1)J−½ (J half-integral) 

Either parity or e/f labels can be used for display as selected by the JAdjustSym setting; on 

input either is accepted. The parity can be determined [34] from the effect of reflection in the 

xz molecular plane, σv. The primitive basis functions |ηJΛΩ> = |ηΛ>|SΣ>|JΩM> are chosen to 

have the following symmetries[14]: 

  
 s

1v  (48) 

where s is 1 for Σ– states and 0 otherwise. 

  


SS
S

1v  (49) 

were Σ (= Ω–Λ) is the projection of S along the molecular axis and 

  MJMJ
J

v 


1  (50) 

To give basis functions with well-defined symmetry, symmetric and antisymmetric 

combinations of the primitive basis functions are taken: 

 






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2

1
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J  (51) 

In this equation Λ is taken as ≥ 0 and the range of Ω is |Λ|+S to |Λ|–S. The basis state is then 

specified by η (implying |Λ|), J, an optional sign (+ or –) and Ω, and has parity ±(–1)J–S+s.  

While a Hund’s case (a) basis is used, the basis is complete (in Ω) so the calculations 

are exact even if the molecule is case (b). There are various possible approaches to other 

Hund’s cases; for case (c) a separate vibronic state (η) for each value of Ω can be appropriate, 

which is possible via the OmegaSelect setting and/or the choice of Λ and S for each state. 

For Ω integer, Λ = Ω and S = 0 is the most straightforward choice. The values of Λ and S used 

are to a certain extent arbitrary for Hund’s case (c), though they will affect the definition of 

the molecular parameters. 

 To assign Ω values to eigenstates the sub-basis mechanism described above is used, 

which requires an expected energy ordering for different Ω values for a given J. In 

spectroscopic terms, this translates to knowing whether the electronic state is normal or 

inverted. In principle this is just given by the sign of the spin-orbit coupling constant, A, but a 

different test is needed if Λ = 0 to account for spin-spin terms or if A = 0, so the test used in 

practice is to compare the diagonal matrix elements of the Hamiltonian for the states with 
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Ω = |Λ|+S and Ω = |Λ|–S for the smallest possible J (= |Λ|+S) for which all Ω components are 

present. If Λ = 0 the states with J = Ω = S and J = S, Ω = 0 are compared. The choice of smallest 

J maximizes the contributions from the spin-orbit and spin-spin terms, though other terms 

can be important if the states compared are very close in energy. (This is where A ≈ 2B in the 

absence of other terms.) To allow for cases where this fails (possible in case of strong mixing 

between electronic states) the OmegaOrder setting allows the test for normal or inverted to 

be overridden.  

The energy ordering scheme is also used to assign the other quantum numbers 

commonly used for linear molecules. For small values of A, the energy will be approximately 

BN(N+1) so for a given J, where the possible values of the N quantum number are J–S to J+S, 

the expected ordering is N = J–S, N = J–S–1, … This also applies to the other label used for 

linear molecule spin states, the spin component number, typically written as F1, F2, F3…, for 

which the expected energy ordering is F1 < F2 < F3 … The assignment of N and Fn is potentially 

more reliable than Ω as the expected energy ordering is independent of the molecular 

constants. For all of these quantum numbers the energy ordering scheme used for assignment 

means the values assigned are stable even if, as will commonly be the case, one or more of 

them is a poor quantum number. 

The lowest J levels, with J < |Λ|+S, require special consideration as there are some missing 

values of the quantum numbers. The expected energy ordering is unchanged and the values 

of Ω and N to omit are straightforward, given the requirements J ≥ |Ω|, N ≥ |Λ| and J ≥ |N–

S|. However, the choice of spin component number to omit is less straightforward, and a 

slightly non-standard choice is made. If the F1 level is taken as the level with J = N + S then this 

should be omitted for the lowest J. This choice can lead to some unphysical switches in branch 

labels such as rR1(J), which are conventionally done in terms of spin component number. The 

choice of omitted spin component is therefore made by considering the normal/inverted test 

described above, and for non-inverted states F1 is kept and the higher spin components 

discarded. This is equivalent to deriving the spin component number from Ω, rather than N, 

and only makes a difference for the lowest J levels of non-inverted states. A specific example 

is the X2Π state of NO; the scheme used here will assign all the strong R branch transitions in 

the fundamental band of NO in the infrared to rR1(J) while the alternative choice would assign 

the first member as rR2(½). In practice the choices described above typically correspond to 

the normal choice in the literature. The only known common case where this does not hold 

is for the lowest level in the X3Σ−
g state of O2 which has J=0, N=1 and e symmetry and which 

PGOPHER will label with F1 by default but F3 is also used in the literature. (The higher energy 

levels are not affected.) The alternative labelling scheme can be forced for O2 by setting 

OmegaOrder to Inverted. 

The Hamiltonian used is, as far as possible, consistent with the bulk of the literature. 

The rotational operator is taken as the standard power series expansion in the angular 

momentum excluding spin, N: 
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12108642

rot
ˆˆˆˆˆˆ NNNNNN PMLHDBH   (52) 

To evaluate matrix elements of Hrot, the standard substitution  22 ˆˆˆ SJN  is made, and the 

matrix elements of Ĵ and Ŝ are well known for a Hund’s case (a) basis[32]. Matrix elements of 
n2

N̂ are evaluated by setting up the matrix of 2
N̂ , and then taking powers of the matrix. As 

discussed by Brown et al[35], strictly N̂  in the above should be replaced by the rotational 

angular momentum of the nuclear framework, LSJR ˆˆˆˆ  . The form involving N̂  is more 

common, but the form with R̂ can be used by setting the RSquaredH flag to true. This 

replaces even powers of N̂ with R̂ throughout, including the operators below. The difference 

in practice is small, with the main effect a shift of the origin of BΛ2 in the energy levels. The 

definition of the origin of a particular vibronic state in any case needs careful checking when 

using literature values; the choice here corresponds to the energy with all terms (apart from 

the origin) zero, which can be significantly different from the energy of the lowest level and 

the choice made in some papers. 

 The fine structure terms required for S > 0 are based on IUPAC recommendations[36]. 

In the list below, […]+ indicates an anti-commutator: 

 ,     O Q OQ QO

   (53) 

The spin-orbit terms are: 
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As discussed by Brown et al[37] the term in η is only required for S > 1. For S > ½ spin-spin 

terms are also required: 
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The term in θ is only required[35] for S > 3/2. The spin rotation interaction has the form: 
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The term in γS is only required[38] for S > 1 and Brown and Milton[39] have given the only 

non-zero matrix element: 
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Λ-type doubling is implemented for Π states: 
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The terms in e±2iφ ensure that the Λ-doubling operators only connect the two halves of a  

state: 

111 2   ie  (59) 

For Λ doubling the term in q applies to any Π state, p requires S > 0 and o requires S > ½. Λ 

doubling for Δ and higher Λ states can be implemented using the more general perturbation 

mechanism, and this can also be used for higher powers of 2
N̂ that are not specifically 

included in the above. This is covered in some detail on the online documentation. 

 The definition of the vibronic transition moments requires some care. The general 

form,   k

qT'  above, hides some detail as there will in general be two symmetry-related 

matrix elements: 

       


STSSTS k

q

ssSSk

q ''''1''''
''  (60) 

The relationship between the two comes from applying the σv operator to all components of 

the transition moment and using equations (48) and (49), combined with the selection rule 

Ω' – Ω = q = Λ' + Σ' – Λ + Σ. (An additional (−1)k is required for magnetic dipole transitions.) The 

value input to the program is the transition moment satisfying Ω' – Ω = q with the transition 

moment with the opposite sign of q calculated from the above. For q = 0 this does not 

uniquely specify the transition moment, so the transition moment with Λ' > 0 is specified, or 

Σ' > 0 if Λ' = 0. This is only important if more than one transition moment contributes to a 

given transition when interference between the transition moments is possible, in which case 

the relative signs make a difference. 

3.2 Symmetric Tops 

 For each vibronic state, η, the overall electron spin, S, and vibronic symmetry must be 

specified. As for linear molecules, the make-up of the overall vibronic symmetry in terms of 

vibrational and electronic parts does not affect the form of the Hamiltonian used, though it 

will affect the magnitudes of the parameters. Unlike the linear case, the angular momentum 

excluding spin, N = J – S, is normally a good quantum number, so the primitive basis states 

are specified by J, N and the projection of N along the highest order symmetry axis, K, giving 

(2S+1)(2J+1) functions for a given J. If required, the values of |K| included in the basis can be 

reduced from the standard range of 0 to N by specifying a minimum or maximum K. This can 

be essential to avoid divergence in calculations where only a limited range of K is known. For 

vibronic states that are degenerate (E symmetry) the size of the basis is typically doubled, and 
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the component of the vibronic state is specified by an l quantum number with values ±1. This 

is similar to Λ in the linear case, in that it can contain both vibrational and electronic parts but 

it is not strictly an angular momentum quantum number.  

 The primitive basis states need some adaptation to give basis states of well-defined 

rovibronic symmetry, as discussed by Hegelund et al[40]; see also section 12.4 of Bunker and 

Jensen[10]. Non-degenerate rovibronic basis states are typically symmetric or antisymmetric 

combinations of the primitive basis states: 

 lKJNJNKlKlJN 
2

1  (61) 

with the obvious exception of K = l = 0 where there is only one primitive basis state. 

Degenerate rovibronic states occur as pairs of primitive basis states, |ηJNKl> and |ηJN–K–l>, 

with no matrix elements between them. In these cases the overall Hamiltonian matrix factors 

into two identical blocks, so it is only necessary to calculate one of the blocks and thus use 

one of the pair of degenerate primitive basis states. The only proviso is that matrix elements 

within the block must not be discarded, which is done by selecting the state with a positive 

value of the quantum number φ (as used in reference [40]) or g (reference [10]). For most 

point groups there are no matrix elements off-diagonal in this quantum number, even in the 

presence of the field, though special action is required for D2nd groups. (An extra factor of two 

is in principle introduced into the overall degeneracy of these states though in practice this 

vanishes when combined with the calculation of the nuclear spin statistical weights.) Overall, 

the basis states are specified by η, J, N (if S > 0), K, l (for degenerate vibronic states) and a sign 

for non-degenerate rovibronic states if K ≠ 0. 

 The quantum numbers for the final eigenstates are given in terms of |K| and, for 

degenerate vibronic states, the sign of Kl, which is most in line with standard usage. The sign 

of Kl is designed to be consistent with the definition of Hoy and Mills[41]. The sub-basis 

mechanism can be used to assign these quantum numbers. For non-degenerate states this is 

straightforward, with a single sub-basis being made up of states with all K for a given J, N and 

rovibronic symmetry. A particular value of |K| will only appear once in any given sub-basis, 

and the expected ordering follows from classifying the molecule as prolate or oblate from the 

rotational constants. Degenerate states are more complicated, as the essential K dependence 

of the energy for an oblate rigid rotor becomes (C–B)K2 – 2CζKl. (Read A for C for a prolate 

rotor.) For a given sign of Kl the ordering depends on |K| as before, but the ordering of the 

Kl < 0 and Kl > 0 sets is not well defined. They are therefore put into separate sub-bases. 

Special consideration is required for K = 0 as the sub-basis it belongs to depends on the 

relative sign of C−B and ζ. For an oblate top (C−B < 0) with ζ > 0, the K = 0 level will be the 

highest energy of the Kl > 0 set so is put in the same sub-basis, but the other set if ζ < 0 or 

prolate. Given mixing between states of different |K| is typically small for symmetric tops, 

the sub-basis mechanism is important only when S ≠ 0 and the default is not to use it but 
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rather to look for the basis state with the largest coefficient to assign K and l. (This is controlled 

by the LimitSearch setting for the manifold.) 

 The overall rovibronic symmetry is also part of the specification of the final 

eigenstates, and is required in principle to completely specify the state. For example, for 

molecules with C3v symmetry, levels of non-degenerate vibronic states with K = 3n are split 

by a small amount, with the levels having A1 and A2 symmetry. This splitting is sufficiently 

small so that it is often ignored, though it can be significant for degenerate vibronic states, 

particularly for K = 1. Transitions involving such states will typically show in PGOPHER 

simulations as a pair of transitions with the same frequency while some other sources may 

show them as a single line. These non-degenerate states typically show patterns of levels that 

alternate with J; for the C3v example the A1 level is alternatively above and below the A2 level 

with increasing J. To assist in these cases an alternative way is provided of specifying the 

rovibronic symmetry, analogous to the e/f notation used in linear molecules. A1 and A2 

become A+ and A– for even J, and vice versa for odd J. Similar notation is occasionally found 

in the literature – see Tarrago and Nhu[42] and the HITRAN database[43]. The same logic 

applies to any point groups with A1/A2 or B1/B2 pairs of symmetries; E symmetry levels are left 

unchanged as they do not show an alternation with symmetry. The use on output is controlled 

by the JAdjustSym setting; on input either is accepted. 

 The rotational Hamiltonian is standard for symmetric tops [11]: 
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Note that ζ is dimensionless. For prolate tops, replace C by A. This only has diagonal matrix 

elements, which follow by replacing 2
N̂ by N(N+1), zN̂ by K and zl̂ by l. Various l-doubling 

terms are also available, which apply to vibronic states of E symmetry: 
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The 2ˆ
l  operator is taken to have the following non-zero matrix elements: 

11ˆ1 2   lll  (64) 

The q+ term and associated centrifugal distortion terms, DqJ and DqK are potentially present 

for all symmetric tops, but there are symmetry restrictions for the other terms. These are 
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discussed by Cartwright and Mills[44]; note that their constants ( )(

tq , )(

tq and rt) are defined 

to include the vibrational dependence as for example : 

  )(22

2
1 1 

  ttt qlvq  (65) 

Here ρ defines the sign convention for the constant, and Cartwright and Mills[44] suggest the 

use of ρ = –1. Care needs to be taken with the sign of the l doubling; it is perhaps best specified 

in terms of the ordering of selected levels, such as the K = l = ±1 levels in C3v. With the 

definition above, a positive value of q+ will put the A1 levels above A2 levels for odd J, or the 

A+ levels below the A– levels using the notation introduced above. 

 The spin-rotation terms (needed if S > 0) are based on the asymmetric top S-reduction 

form described below: 
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 (66) 

and electron spin-orbit and spin-spin terms are: 

    zzeffz SlaSSSH ˆˆˆˆˆˆ3ˆ 22
2

122

ss  S  (67) 

As for the linear case, centrifugal distortion and other terms not included among the standard 

parameters above can be implemented by perturbations. 

As for linear molecules, there can be two possible vibronic transition moments related 

by symmetry for perpendicular bands. Specifically the value of one vibronic transition 

moment,   k

qT' , is input to the program which gives transitions with K' = K + q. The 

transition moment with the opposite sign of q is then calculated by symmetry. 

3.3 Asymmetric Tops 

 For asymmetric tops a symmetric top primitive basis is used, |ηJNK>, involving the 

same η, J, N, S and K quantum numbers described in the previous section. The complication 

of degenerate vibronic states is not possible for asymmetric tops so the l quantum number is 

not required, but the choice of the axis used to define K is now not obvious. Here we use the 

molecule-fixed z axis as the quantization axis for K, but this can be mapped to any of the three 

principal inertial axes, a, b or c. A choice must also be made for the x and y axes, giving six 

possible choices, normally referred to as the representation and specified using the notation 

devised by King et al[45] shown in Table 1. 
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Table 1 Definition of the Representation for the axis system for asymmetric tops 

 Representation 
 Ir IIr IIIr Il IIl IIIl 

z a b c a b c 
x b c a c a b 
y c a b b c a 

 

Which of the six representations is used must be specified as part of the process of setting up 

the calculation. It is important to be aware of which representation is used, as many of the 

parameters below are specified in terms of operators in the x, y and z axis system rather than 

the a, b and c system used to specify the rotational constants A, B and C. For example, the 

centrifugal distortion term 4ˆ
zK ND is defined in terms of the zN̂ operator and thus the z axis. 

Likewise the  44 ˆˆ
  NNJ  term is defined in term of the yx NiNN ˆˆˆ  operator, and thus 

the x and y axes. Changing the representation thus changes the definition of the constants, 

and converting constants is not straightforward. 

 To give basis states of well-defined symmetry, symmetric and antisymmetric 

combinations of the primitive basis states are taken: 

 KJNJNKKJN 
2

1  (68) 

and the basis states are then completely specified by η, J, N, K and a sign (+ or –) for K ≠ 0. 

These are the standard Wang combinations, for which the notation E+, E–, O+ and O– is used, 

where E and O refer to even and odd K and the sign is the sign in the above. Unlike the 

symmetric top case the symmetry is not required as part of the basis specification. If the 

PhaseAdjust setting is on, the functions above are multiplied by an additional phase factor 

given in Table 2, which will remove the need for imaginary matrix elements in some 

circumstances where odd powers of yN̂ are used. 

Table 2 Phase factors applied when the PhaseAdjust setting is on. 

 K even, + K even, – K odd, + K odd, – 

 E+ E– O+ O– 

N even 1 –i i –1 

N odd i –1 1 –i 

 

 The overall rovibrational symmetry is specified in terms of irreducible representations 

of the point group. For this to be possible, the correspondence between the principal inertial 

axes and the elements of the point group must be specified, via the C2zAxis and C2xAxis 

settings. In C2v the C2zAxis setting specifies the z' axis of the point group (the C2 axis) and 

the C2xAxis setting specifies the x' axis of the point group which is normally chosen to be 
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the out of plane axis in planar molecules. Primes are used here to emphasize that the 

conventional axes for the point group (x', y' and z') can be different from the axes that define 

the axis representation (Table 1). For example, in C2v the point group would typically take z 

along the C2 axis, but there is no necessity to choose this axis to define K in the basis. The 

meaning of C2zAxis and C2xAxis depend on the point groups; see Table 3 for details. 

Table 3 Symmetry properties for asymmetric tops 

 C2zAxis C2xAxis J adjusted symmetry labels 

C1 -a - A always 

Ci -a - Ag/Au 

C2 C2(z') - E/O, +/– or E+O–/E–O+ 

Cs σ(x'y')b - E/O, +/– or E+O–/E–O+ 

D2 C2(z') σ(y'z')b E+/O–/E–/O+ 

C2v C2(z') x' E+/O–/E–/O+ 

C2h C2(z') - Eg/Og/Eu/Ou, +g/–g/+u/–u or E+O–g/E–O+g/E+O–u/E–O+u 

D2h C2(z') C2(x') E+g/O–g/E–g/O+g/E+u/O–u/E–u/O+u 
a All rotational states of a given vibronic state have the same symmetry; J adjusted symmetry 

is the same as the standard rovibronic symmetry. 

b  Axis is perpendicular to specified plane of symmetry. 

While the individual Wang combination basis functions will have a specific 

rovibrational symmetry, the relationship depends on N¸ the point group, the representation, 

the C2zAxis and C2xAxis settings and the vibronic symmetry. To factor out the N 

dependence (as for e and f in linear molecules) notation based on the Wang labels, E+/E–

/O+/O– is used, if the JAdjustSym setting in on. The assignment of these labels is based on 

the symmetries of totally symmetric vibronic states so, for example, the E+ label is used for 

any state which has the same overall rovibronic symmetry as even K symmetric combinations 

for a totally symmetric vibronic state. For point groups other than C2v some adjustment to 

this notation is needed; for molecules with a centre of symmetry a g or u label is added from 

the rovibronic symmetry. For the lower symmetry groups some of the labels must be 

combined, as some rovibronic symmetries correspond to more than one Wang combination. 

The variations are summarised in Table 3. 

An additional symmetry notation used in asymmetric tops is ee/eo/oe/oo where the 

first and second letters specify the whether the Ka or Kc quantum numbers are even or odd 

respectively. These can be mapped to the symmetries specified above, and are used in 

specifying the statistical weights – the weights are given for levels with ee, eo, oe and oo 

symmetry for totally symmetric vibronic levels, and the weights are adjusted as required for 

other vibronic symmetries. The mapping between all three symmetry notations depends on 

many factors, and there are too many possibilities to tabulate here, but PGOPHER will print a 
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symmetry table for each vibronic state if requested. Two sample tables are presented in 

Figure 3. 

Symmetry Table for A1 C2v PseudoC2v:False Ir C2zaxis:a C2xaxis:c 

 A1 0 ee E+ Ka+Kc=N   (Even N) E- Ka+Kc=N+1 (Odd N)  

 A2 1 eo E- Ka+Kc=N+1 (Even N) E+ Ka+Kc=N   (Odd N)  

 B1 2 oo O+ Ka+Kc=N   (Even N) O- Ka+Kc=N+1 (Odd N) 

 B2 3 oe O- Ka+Kc=N+1 (Even N) O+ Ka+Kc=N   (Odd N) 

 

J adjusted Symmetry Table 

 E+: Even N: A1 0  ee E+ Ka+Kc=N    Odd N: A2 1  eo E+ Ka+Kc=N   

 E-: Even N: A2 1  eo E- Ka+Kc=N+1  Odd N: A1 0  ee E- Ka+Kc=N+1 

 O+: Even N: B1 2  oo O+ Ka+Kc=N    Odd N: B2 3  oe O+ Ka+Kc=N   

 O-: Even N: B2 3  oe O- Ka+Kc=N+1  Odd N: B1 2  oo O- Ka+Kc=N+1  

 

Symmetry Table for B1 C2v PseudoC2v:False Ir C2zaxis:a C2xaxis:c 

 A1 0 oo O+ Ka+Kc=N   (Even N) O- Ka+Kc=N+1 (Odd N)  

 A2 1 oe O- Ka+Kc=N+1 (Even N) O+ Ka+Kc=N   (Odd N)  

 B1 2 ee E+ Ka+Kc=N   (Even N) E- Ka+Kc=N+1 (Odd N) 

 B2 3 eo E- Ka+Kc=N+1 (Even N) E+ Ka+Kc=N   (Odd N) 

 

J adjusted Symmetry Table 

 E+: Even N: A1 0  oo O+ Ka+Kc=N    Odd N: A2 1  oe O+ Ka+Kc=N   

 E-: Even N: A2 1  oe O- Ka+Kc=N+1  Odd N: A1 0  oo O- Ka+Kc=N+1 

 O+: Even N: B1 2  ee E+ Ka+Kc=N    Odd N: B2 3  eo E+ Ka+Kc=N   

 O-: Even N: B2 3  eo E- Ka+Kc=N+1  Odd N: B1 2  ee E- Ka+Kc=N+1 

 

Figure 3 Sample symmetry table printout for vibronic states of A1 (first half) and B1 symmetry 
in C2v. 

There can be circumstances in which it is appropriate to use a higher effective 

symmetry than the molecule possesses, because the important terms in the Hamiltonian 

involve even powers of the rotational Hamiltonian, giving an effective C2 symmetry around 

each axis, isomorphic to D2 and C2v. The PseudoC2v setting is available to indicate this 

situation. This forces the use of C2v symmetry (or D2h symmetry if the molecule has a centre 

of symmetry) in calculations, potentially speeding then up by a factor of 16. Alternatively the 

higher effective symmetry can be set, in which case the FakeSym setting may be required to 

disable some logic that would otherwise limit possible transitions. (For an example of an 

exclusion, compare a molecule with C2v symmetry, which can only have a dipole moment 

along one axis, to a molecule with C1 symmetry, which can have a dipole moment along any 

axis.) 

The conventional rotational quantum numbers for asymmetric tops are Ka and Kc, 

corresponding to |K| along the a and c axes in the prolate and oblate limits respectively. 

While Ka and Kc are not good quantum numbers away from these limits, the sub-basis 

mechanism can be used to assign them, as there is a clear expected energy ordering with 

levels increasing in energy with Ka and decreasing with Kc. The ordering is thus JKaKc = J0,J, J1,J, 

J1,J–1, … , JJ,1, JJ,0. For the sub-basis mechanism, each of the Wang combination types are put 

in a separate sub-basis as mixing between these is likely to be small because of the effective 

C2v or D2 symmetry of the important terms in the Hamiltonian discussed above. The symmetry 
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mapping mentioned above determines the set of Ka and Kc quantum numbers included in 

each sub-basis, and the expected energy ordering then gives the assignment within the sub-

basis. The basis is specified in terms of single K value; for the Ir or Il representation where 

K = Ka, the Kc value associated with the basis is determined by symmetry, and similarly for IIIr 

or IIIl, where K = Kc. For IIr or IIl where K = Kb, the mapping to Ka and Kc is not as 

straightforward; the possible values of Kb are also limited by symmetry and the choice made 

is that if B ≥ (A+C)/2 then the Ka and K quantum numbers are taken in the same order and if 

B < (A+C)/2 then the Kc and K quantum numbers are taken in the same order. This does not 

affect the final Ka and Kc assignment as the energy ordering logic is not changed, but can affect 

some details of the wavefunction display. 

The rigid rotor Hamiltonian can be specified in two ways, either the standard form: 

222

rot
ˆˆˆˆ

cba JCJBJAH   (69) 

or an alternate form: 

   22
4

1222

alt
ˆˆˆˆˆˆ
  JJJBJAH zz J  (70) 

The alternate form can give better determined parameters if two of the rotational constants 

are very similar, and low resolution spectra may be insensitive to δ. A common application of 

this is a near-prolate top where B ≈ C and, for a Ir or Il representation: 

 CBB  2
1  (71) 

CB   (72) 

(In practice the alternate form is always used for evaluating matrix elements, with appropriate 

values substituted for A, B̅ and δ.) 

The centrifugal distortion terms can use either the A-reduced or S-reduced forms 

proposed by Watson[46], controlled by the SReduction flag. It is important to specify the 

form used, along with the axis representation in any calculation as the definition of the 

constants depends on both of these. The specific forms used are: 

A-Reduction: 
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S-Reduction: 
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(See the on-line documentation for the names used by PGOPHER). 

 The electron spin rotation Hamiltonian, present if S > 0 is: 
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where  baabab  2
1 ,  caacac  2

1  and  cbbcbc  2
1 . The form above is 

required as pN̂ and qŜ  only commute if p = q. This is discussed by Brown and Sears[47] who 

also derived the centrifugal distortion of this interaction, which depends on the reduction: 

A-Reduction: 
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S-Reduction: 
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The S-reduction names are used in PGOPHER. For S ≥ 1 the electron spin-spin interaction is also 

required[13]: 

       22
2

1222222

ss
ˆˆˆˆ3ˆˆˆˆ3ˆ
  SSSSSSH zyxz SS  (78) 

Unlike the linear and symmetric top cases, the lower symmetry forces the 

requirement to specify separate values for spherical tensor vibronic transition moments, 

  k

qT' and   

k

qT' . A slightly non-standard notation is used here; if T(k,q) and T(k,–

q) are the two input values (taking q > 0), then for matrix elements with K' = K + q the vibronic 

part of the transition matrix element is taken as T(k,q) + T(k,–q). For matrix elements with 

K' = K – q, the vibronic part is taken as T(k,q) – T(k,–q). With this definition the effective 
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operators associated with T(k,q) and T(k,–q) have different symmetries in the more symmetric 

point groups, such as C2v, so only one value need be specified for a given vibronic transition. 

For one photon transitions the transition dipole moment can also be given in the more 

common format of x, y and z components; these correspond to T(1,–1), T(1,+1), and T(1,0) in 

this notation, though with a slightly different phase choice. 

3.4 Matrix elements and adding additional terms to the Hamiltonian 

 The specific Hamiltonians described above are only sufficient where interactions 

between different vibronic states can be ignored, but this is often insufficient, especially for 

high resolution studies or states above the vibronic ground state. PGOPHER is specifically 

designed to make adding additional terms to the Hamiltonian straightforward; these are 

added as additional objects (one per additional term) under a manifold object, and can be 

used to add terms for a single state omitted from the standard Hamiltonians described above, 

or to add interactions between different vibronic states. Each individual perturbation is 

specified in terms of angular momentum operators. The documentation with the program 

details the possible operators, which include most possible combinations of angular 

momentum operators for each molecular type. The possible combinations are sufficiently 

general that each of the operators in the standard Hamiltonians above can be expressed as a 

perturbation. 

 The same basic implementation can be used for both vibrational and electronic 

interactions. For example interactions between vibrational states within the ground 

electronic state of HCHO have been modelled[19] in terms of operators including 
bĴ ,

cb JJ ˆˆ  

and bĴˆ 2
J . Similarly, interactions between the B and B" electronic states in S2 have been 

modelled[18] in terms of a J independent spin-orbit operators and a J dependent LJ ˆˆ
  

uncoupling interaction. 

The same approach can also be used to add terms beyond the standard ones 

considered above. For example, the standard symmetric top Hamiltonian, equation (62) 

above, implements centrifugal distortion terms with powers of N up to 8. Arbitrary higher 

powers can be added as required using perturbation objects; the next order terms might 

include 10
N̂  and 28 ˆˆ

zNN  for example.  

 The perturbation mechanism is also used to implement an additional facility, to assist 

in verifying the precise Hamiltonian used. (The reason for including this in the perturbation 

section is that all the standard Hamiltonians can be converted to a sum of perturbation 

objects). A basic symbolic algebra package is included in the program and is used to work out 

and display expressions for the matrix elements used for each parameter as part of the header 

for each fit or line list. This is often important as, while PGOPHER is designed to conform to 

common usage, non-standard Hamiltonians are not unusual in the literature. This is 

particularly the case for interactions between vibronic states, for which a standard has not 

really evolved, but also applies to more common terms. Comparing matrix elements of 
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different Hamiltonians is an effective way of identifying the exact calculation performed as 

part of published work. A worked example of this is given is the program documentation for 

the A5Π – X5Σ transition of CrO where the literature analysis[38] chose to specify the origin of 

the Ω components individually, rather than use A, η, λ and θ. PGOPHER is sufficiently flexible to 

be able to handle either formulation. 

5 Fitting Spectra 

 In general the dependence of the calculated values, yi, i = 1..n on the parameters of 

the simulation, pj, j = 1..m, is non-linear, but for fitting purposes it is assumed that the 

dependence is linear over small ranges of the parameters, so it is possible to approximate the 

dependence of the calculated values for a given vector of parameter values, p, as: 

    






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m

j

j

j

i
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ppp  or in matrix form: y(p+Δp) = y(p) + a Δp (79) 

where Δp is the vector of changes in the parameters, a is the m×n matrix of partial derivatives 

and y(p) the vector of values calculated with parameters p. If the effective observed values 

are taken as the difference between the true observations, O, and the values calculated from 

the current parameter set, y(p) then the standard methods of linear least squares fitting[48] 

can then be used to estimate the changes in the parameters, Δp, that minimises the sum of 

residuals squared, |O–y(p+Δp)|2 : 

Δp = (aTa)–1aT (O–y(p)) (80) 

In practice the non-linear nature of the problem means this process must be repeated until 

converged, as discussed below. 

 The evaluation of (aTa)–1a requires care, as it can be sensitive to numerical problems. 

The method used here to avoid such problems involves singular value decomposition, where 

the matrix a is decomposed into a product of three matrices: 

a = UΣVT (81) 

where U and V are square orthogonal matrices of sizes m×m and n×n respectively and Σ is a 

diagonal matrix of size m×n. This is equivalent to using a transformed set of parameters, p' = 

VTp with no correlation between the parameters, and the changes to the transformed 

parameters being given by Σ–1UT (O–y(p)). (As Σ is not a square matrix, Σ–1 is not a true inverse, 

but is found by inverting the diagonal elements.) As well as being numerically more stable, 

the singular values Σi (the diagonal elements of Σ) can be used to indicate parameters, or 

combinations of parameters, that are not determined by the data. This is discussed by 

Lees[49]; note that the discussion in that paper is in terms of the normal matrix, B = aTa and 

its eigenvalues λi, but this is equivalent to the singular value decomposition used here given 

that aTa = (UΣVT)T UΣVT = VΣTΣVT from which it can be seen that Σi = λi
½. 
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The singular values are the inverse of the standard deviations of the transformed 

parameters, p', so a small singular value implies a poorly determined parameter. To make this 

an absolute indicator, independent of the units or other scaling factors of the parameters, the 

scaled parameters suggested by Lees[49], p*
i are adopted: 

p*
i = ci pi where 

 




n

j i

j

i
p

y

c 1
2

1
 (82) 

With this transformation, each column of the derivative matrix, a, is a unit vector and the 

singular values are in the range 0…m. With this scaling, singular values approaching the 

machine precision imply completely undetermined parameters and the fit will make 

essentially random changes to the parameters. These changes can be easily avoided by setting 

the inverses of very small elements of Σ to zero. This means combinations of parameters that 

are very poorly determined are not changed. An obvious example would be floating the origin 

of both the upper and lower state in a transition, where the only the difference between the 

parameters is well determined. The process described here will leave the sum unchanged, 

and display that as the problem combination, but nevertheless make equal and opposite 

changes to the parameters and thus improve the simulation. Less obvious examples can arise 

quite often in the process of putting a fit together, especially where a partial assignment 

means there is limited data in the fit. The threshold for elimination is the SVDThresh setting, 

for which empirical testing suggested the default value of 10–6 as able to catch many common 

problems. If any transformed parameters are discarded, the corresponding combination of 

original parameters is printed out to allow identification of the problem. 

An alternative decomposition of a, QR factorization, is also available, which provides 

similar advantages as regards numerical stability[50] but without the automatic constraints 

on undetermined parameters. It is used if SVDThresh is set negative. 

 The above assumes equal weight should be given to each observation, but this can be 

varied by specifying the accuracy of each observation in the form of an estimated standard 

deviation. Formally these estimates have the same units as the observation, though in fact 

only the relative values affect the outcome of the fit. It is also possible to specify correlation 

coefficients between observations; this is not normally required but can be essential for 

correct statistics in fitting to differences between observations[51]. Internally both are 

accounted for by transforming observations so they have standard deviation one and 

uncorrelated with other observations and then using the unweighted fit process. If 

correlations are present the transformation requires taking linear combinations of 

observations, though weighting only requires a simple scaling. 

 The program is designed for interactive fitting, where a plausible initial set of 

parameters is set up to simulate the available observation, some parameters are selected to 

be floated, a single fit cycle is performed and the results then inspected. A typical work flow 

might involve starting by setting only the major parameters for a molecule, perhaps the origin 
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and rotational constants. The interactive nature of the program makes it straightforward to 

find sensible values by trial and error, or checking estimates derived from the literature. A 

single fit cycle is then performed, with some of these parameters floated; if not successful an 

“undo fit” button is available to step the parameters back one or more fit cycles. Once a given 

fit is successful, it can be refined by some combination of adding more observations, floating 

more parameters and adding more parameters to the model, and repeating the testing. For 

example, the importance of centrifugal distortion terms can be tested by floating successively 

higher order terms and if the resulting parameters are not determined, undoing the fit and 

fixing the parameter to zero. This naturally overlaps with an interactive assignment process 

where a few lines of low J are initially identified and the assignments extended to increasingly 

higher values of J.  

As fits are non-linear, the fit cycles need to be repeated until convergence is reached. 

There is no formal convergence test in the program; the fit is simply repeated until the values 

are as stable as required. The work flow described above, which results in increasingly larger 

numbers of parameters being floated, typically needs only a few cycles at each step, as 

parameters from the previous step will be reasonably well determined. The rapid 

convergence also removes the need for refinements to the fitting process such as adapting 

the step sizes or directions. This scheme also reduces the likelihood of reaching a false 

minimum in the residual error, another common problem with non-linear fits. The possibility 

cannot be completely excluded, but the interactive nature of the program does provide for 

easy checks on other factors, such as inspecting plots of observed-calculated values or 

calculated intensities that can indicate poor fits. It also makes it straightforward to repeat the 

fit from several different starting points. 

Several possible styles of least squares fitting are implemented; in addition to the 

traditional spectroscopic fits to line positions, it is also possible to fit to line intensities, energy 

levels or common differences in any combination. Alternatively a contour fit directly to an 

observed spectrum can be used, which does not require line assignment and can be essential 

where lines are only partly resolved. While the lack of requirement for an assignment might 

be superficially attractive, a contour fit will typically require more care for successful 

outcome. Firstly, this is because the starting parameters are more important; the method 

described below for determining derivatives will only work for a single isolated line if the 

simulated line position is within a line width of the observed transition. In practice this 

translates into a requirement that a reasonable number of the strongest lines are close to the 

observations, or that the overall initial band contour is qualitatively correct. An additional 

problem with contour fits is that a false minimum in residuals is more likely; an obvious “easy” 

fit is to increase the linewidth in the simulation to wash out all the structure, and more subtle 

problems are also possible. The interactive nature of the program does, however, allow such 

problems to be spotted easily. An effective method of working on partially resolved structure 

is to start with a standard line position fit, and then refine with a contour fit as this gives a 

good starting position for the contour fit. 
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Given the variety of possible styles of fitting, it is a requirement that any of the 

parameters controlling a given simulation can be floated and thus determined as part of the 

fitting process. As well as the standard molecular parameters such as rotational constants, 

other variables such as temperature, linewidth and even the population of individual levels 

can also be determined by fitting. To allow for this generality, the derivatives of the 

observations with respect to the fitted parameters are evaluated numerically. This involves 

repeating the full simulation for each parameter, pj displaced from its initial value by an 

increment δpj, and the estimate of the derivative of observation i, yi is: 
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For speed, only a single displacement is done for each parameter. By default the displacement 

δpi = 10–4pi (or an arbitrary 10–3 if pi = 0) but this can be set individually for each parameter if 

required. In straightforward cases the fit is insensitive to the size of the displacement but if 

the fit is rather non-linear, or parameters differ by many orders of magnitude, this can require 

some adjustment. Some interactive tools are provided for this; the first of these is a “check 

derivatives” command, which repeats the derivative calculations with all the increments 

scaled by a chosen value. The largest difference between the two estimates of the derivatives 

is then displayed for each parameter, expressed as a fraction of the largest derivative with 

respect to that parameter. This will reveal parameters for which the increment may require 

adjustment; well-behaved parameters will typically give fractional errors < 10−5 whereas 

fractional errors > 10−3 will often cause problems with the fits. Empirically it is found that a 

good value for the increment is the standard deviation of the parameter, or some fraction of 

it. If the increment is too small then machine precision will limit the accuracy to which the 

derivative can be calculated, but if it is too large then non-linearities in the function will also 

limit the accuracy. The standard deviation is likely to be a reasonable compromise, as it must 

necessarily make a significant change in the calculated values and if the calculation is non-

linear over the range of the standard deviation the fitting process is anyway likely to be 

suspect. A command is therefore available to set the increments of selected parameters to a 

chosen fraction of the standard deviation of the parameter from the previous fit.  

At the end of each fit cycle, the root mean square error in the fit is given, in terms of 

an unweighted sum: 
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and also a weighted sum, σf, which is essentially the above equation with the observed – 

calculated value, Oi – yi, replaced by (Oi – yi)/σi, where σi is the standard deviation of 

observation i. (The true form is more complicated if correlations between observations have 

been included.). The parameter values before and after the fit are reported, together with 
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the standard deviation of the parameter (calculated from σf) and the correlation coefficients 

between the parameters. Also given is the sensitivity, Sj, of each parameter as defined by 

Watson[52], which gives guidance as to the number of significant figures that should be 

quoted for any given parameter. This is defined as the change in a parameter that increases 

the overall error in the fit by a factor of no more than 0.1/m. For fits with strong correlations 

between parameters this can be rather smaller than the standard deviation, implying that 

many more significant figures must be quoted than suggested by the standard deviation to 

ensure that the calculated values can be reproduced from a given set of parameters. See Le 

Roy[53] for a discussion of this point, and a sequential rounding and refitting procedure that 

can be performed to reduce the unphysical precision required in published parameters. This 

can be done manually if required with PGOPHER; the requirement to do so will be indicated by 

the summary of the parameter displayed using the common convention with the standard 

deviation expressed in units of the least significant digit, as in 2.345(56) meaning 2.345±0.056. 

The number of figures displayed in the parameter and standard deviation is determined from 

the sensitivity, and is increased if required from the default of 2 in the standard deviation if 

the sensitivity is less than 1/10th of the standard deviation. 

Several other enhancements to the fitting process are described in the on-line 

documentation. Line lists from other sources can be included in the fitting process with 

different weights as appropriate, such as combining data from microwave and infra-red 

sources. The program will take a variety of different formats including HITRAN[22] and 

Pickett’s CALPGM suite[2]. It is also possible to specify constraints between parameters using 

general algebraic expressions, or fit to an introduced variable (see “variables” in the on-line 

documentation) with other parameters set from this variable. 

 In reporting the results of fits, the log file is intended to be a complete description of 

the fit, suitable for inclusion as supplementary data with a paper. As well as the standard 

information about residuals and errors, it also includes the correlation matrix and, as 

discussed above, algebraic expressions for the matrix elements used. It is also possible to 

produce a line list with predicted uncertainties based on the estimated errors in parameters 

and the correlations between them. (The ShowEstUnc flag controls this.) 

6 Conclusions 

The program presented is sufficiently general purpose that it will handle most 

requirements for simulating and fitting rotational structure in molecular spectra. The most 

significant omissions in the current version are spherical top molecules, and a general way for 

handling internal rotation. The structure of the program allows the former to be added fairly 

easily, but internal rotation is a more difficult problem. Where internal rotation effects are 

small the spectroscopic effects can be modelled by adding a few additional terms to the 

Hamiltonian via the perturbation objects described above, but larger effects will require 

additions to the program. 
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In addition to the general purpose nature of the program, a key feature is the 

interactive set of tools for assigning, fitting and understanding spectra. These all follow the 

traditional spectroscopic method of assigning spectra, based on trial and error and informed 

by expert knowledge. There are alternative approaches to assignment that have been 

developed recently such as genetic algorithms[54] and the systematic search over many 

possible assignments used in the AUTOFIT program[55]. The core of both of these requires 

repeated related simulations, much as already implemented in PGOPHER for least squares 

fitting, and addition of these methods is being considered for future versions of the program. 
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